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Abstract
Adolescence is a period of dynamic change across multiple
systems. Concurrent maturation of neural, biological, and
psychosocial functioning renders adolescence a time of
heightened sensitivity to both negative and positive experi-
ences. Here, we review recent literature across these domains,
discuss risk and opportunity in the context of ongoing neural
development, and highlight promising directions for future
research. Finally, we propose that conceptualizing adoles-
cence as a sensitive window during which plasticity across
multiple systems is enhanced may support the identification of
links between experience, neurodevelopment, and
psychopathology.
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Introduction
Adolescence, typically defined as the developmental
stage that begins with the onset of puberty and ends
when individuals reach adulthood [1], is a unique time
of neural, behavioral, and biological flux. This develop-
mental period is characterized by a distinct increase in
brain plasticity, pubertal maturation, and shifts in

behavior, such as increased independence and attention
to peer relationships [2]. The emergence of psychopa-
thology also peaks in adolescence [3], with youth who
have been exposed to stressful life events at elevated
risk for developing psychopathology [4]. Understanding
how stressors experienced prior to and during the dy-
namic adolescent period affect neurodevelopmental
trajectories, behavior, and mental health is of critical
Current Opinion in Psychology 2022, 44:286–292
importance to efforts that aim to optimize interventions
based on developmental stage.

Here, we review and discuss recent evidence suggesting
that stressors exert differential influences on neuro-
development and behavior during adolescence. In addi-
tion to heightened risk during adolescence, we consider
how adolescence also confers unique opportunities for

resilience, such as the buffering effects of a positive
social environment. Finally, we explore promising di-
rections for extending our understanding of the ways in
which specific dimensions of stress may impact devel-
opmental change across systems during adolescence.

The hypothalamic-pituitary-adrenal axis
during adolescence
Adolescence is a period of significant physiological
maturation, including of the hypothalamic-pituitary-
adrenal (HPA) axis. Enhanced plasticity of the HPA
axis during adolescence is one potential pathway
through which stress exposure may exert long-lasting
effects, but also may represent a window of opportu-
nity for resilience. The HPA axis is responsible for
regulating the body’s acute stress response, via the
release of glucocorticoid hormones. Prolonged exposure
to glucocorticoid hormones can lead to cumulative

changes in neural structure and may mediate the asso-
ciation between stress exposure and brain structure and
function [5,6]. Both heightened and blunted cortisol
responses have been associated with stress exposure,
underscoring the complexity of the effects that stress
exerts on the neuroendocrine system [7]. Age and
developmental stage are important factors contributing
to this complexity. During adolescence, the onset of
puberty triggers a cascade of hormonal changes that
affect systems throughout the body [8e10], including
the HPA axis. In rodents, the acute hormonal stress

response lasts about twice as long in adolescent animals
than in adults, possibly due to modulation by gonadal
hormones [11]. Furthermore, in contrast to adult ro-
dents whose hormonal stress responses habituated to
chronic stress exposure, exposure to chronic stressors
resulted in repeatedly heightened responses in adoles-
cent rodents [9]. These adolescent-specific shifts in
HPA signaling indicate that adolescence is a period of
plasticity for the HPA axis, during which it is likely that
the upstream regulators of the hormonal stress response
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are undergoing maturation and adaptation to conditions
of the current environment.

Although childhood stress can have effects that last into
adulthood [12], not all children exposed to stress
develop psychopathology [4], and development pro-
vides unique opportunities for resilience. Recent evi-
dence highlights a particular phenomenon that may

facilitate reshaping specifically during adolescence.
Although early childhood is known to be a particularly
potent period for sculpting stress reactivity [7,13,14],
recent findings suggest that adolescence may represent
a second developmental stage during which increased
plasticity of the HPA axis facilitates recalibration based
on the current environment [15,16]. Youth exposed to
institutionalization in early childhood and later adopted
into stable families showed a more blunted cortisol
response in early puberty relative to never-
institutionalized peers. However, youth previously

exposed to institutionalization demonstrated longitu-
dinal increases in cortisol response over the course of
puberty, such that their cortisol responses did not differ
from never-institutionalized youth by later puberty
[15,16]. Critically, recalibration is dependent on a shift
from the early adverse environment to a more predict-
able, less harsh environment during adolescence [16],
and the precise role that such recalibration may play in
later wellbeing remains unclear [17,18]. Evidence of
pubertal recalibration is consistent with the possibility
that neuroendocrine maturation confers HPA axis plas-

ticity in adolescence, during which positive environ-
mental input such as supportive caregiving may
facilitate adaptive reshaping.
Neural maturation during adolescence
Neural plasticity is also heightened during adolescence,
conferring greater sensitivity to both positive and nega-
tive environmental exposures [19e21]. Brain structure
and function undergo substantial change during adoles-

cence, likely owing in part to morphological changes such
as synaptic pruning and myelination [22e25]. The brain
matures in a region-specific and nonlinear manner, with
some regions such as the hippocampus and amygdala
reaching a mature state earlier than cortical regions,
which continue to develop into adulthood [22,26]. Re-
gions that undergo protracted development, such as the
association cortex, may remain in a more plastic state
during adolescence [20,26e28] and thus be more sensi-
tive to environmental inputs during this time [19,29,30].
Prefrontal and limbic regions also have high densities of

glucocorticoid receptors [6], and hormonal stress re-
sponses may interact with ongoing neurodevelopmental
processes in ways that produce stress-associated changes
in these regions during adolescence.

Although adolescence is posited to be a sensitive period
for the development of the association cortex and
www.sciencedirect.com
corresponding higher-order cognitive and affective pro-
cesses [28], previous research has almost exclusively
relied on animal models to examine molecular mecha-
nisms of sensitive period onset and offset because it is
challenging to identify biological hallmarks of a sensitive
period in a noninvasive manner [31e34]. However,
innovative work recently tested for changes in the
excitatory to inhibitory neurotransmission ratio, which

has been linked with sensitive period closure, in ado-
lescents. The researchers used data from a sample of
adults to generate a model that distinguished neural
connectivity patterns associated with increased inhibi-
tory neurotransmission among adults taking benzodiaz-
epines [35]. Applying this model to a developmental
sample of youth, results showed a gradual reduction in
the ratio of excitatory to inhibitory patterns in associa-
tion cortex across adolescence, aligning with past animal
work on molecular properties that characterize the
closing of sensitive periods [31e34]. These findings

support the idea that adolescence represents a unique
window of development, such that disruptions in ex-
pected inputs (such as predictable and nurturing social
relationships) might exert heightened effects on the
developing cortex.

A growing body of research has identified potential
mechanisms by which stress exposure affects the
developing brain and risk for psychopathology. Stress
experienced in childhood can heighten sensitivity to
future stressors, thereby increasing the likelihood of

developing stress-related psychopathology in adoles-
cence [36,37]. Recent evidence indicates that variation
in subcortical brain volumes and fronto-amygdala func-
tional connectivity may contribute to such effects of
stress sensitization [38,39]. While the possible relation
between stress sensitization and sensitive periods of
plasticity has yet to be elucidated, sensitization effects
may be particularly strong when the subsequent stress
exposure occurs during periods of increased plasticity,
such as adolescence. Another potential mechanism by
which stress exposure may influence functioning is via
more rapid neurobiological maturation [40,41], which

parallels evidence of acceleration in pubertal develop-
ment and cellular aging after stress [42,43]. Youth pre-
viously exposed to childhood stress display more mature
patterns of connectivity between limbic and prefrontal
regions [44e48,82], although the extent to which ef-
fects of acceleration may be specific to stress charac-
terized by threat [42,49,50] or to corticolimbic circuitry
[46] is less clear. Such ‘stress acceleration’ may reflect an
adaptive response to meet the demands of a harsh early
environment [40,51]. Consistent with the idea that
more rapid corticolimbic neural maturation may confer

some initial benefit following stress exposure, youth who
exhibited more mature patterns of corticolimbic con-
nectivity also had lower internalizing symptoms [44,82]
and slower telomere shortening and pubertal tempo
[47]. However, the ways in which changes in the timing
Current Opinion in Psychology 2022, 44:286–292
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of circuit development d including potential alteration
of the timing or trajectory of an adolescent sensitive
period d may be linked with later psychopathology is
not yet clear.
The social environment during adolescence
In part due to dynamic changes in neurobiological
development and pubertal maturation, youth become
more highly attuned to the social environment as they
enter adolescence [2,52], with peer relationships play-
ing a central role in adolescent wellbeing [53e55]. This
increased sensitivity to the social environment repre-
sents a distinct shift from childhood and may mark a

period during which social stressors exert dispropor-
tionate effects relative to other stages of life. Indeed,
adolescents are particularly susceptible to social risks
and peer rejection, which in turn are associated with
depressive symptoms [56].

Alongside the burgeoning importance of peer relations,
stress and support at the family level continue to play a
critical role in adolescence. Although adolescents are
more attuned to social stressors [56], they are also more
sensitive to positive social experiences such as social

approval and supportive caregiving [57,58]. Indeed,
sensitivity to supportive caregiving is heightened in
adolescence and associated with increased reward
responsiveness and better mental health, even for ad-
olescents who experienced intense psychosocial stress
during childhood [57]. Supportive caregiving can buffer
against the effects of social stressors such as peer
victimization on mood and behavior [59] and may also
exert protective effects at the neural level. Several
recent studies suggest that supportive caregiving
buffers against stress-associated changes in neural
connectivity [60] and fronto-amygdala structural

development [61] and may attenuate anxiety via
cortical activation during adolescence [62]. These ef-
fects of supportive caregiving on adolescent mental
health and neurodevelopment indicate that parent and
caregiver relationships continue to be of great impor-
tance for adolescent wellbeing, despite emerging in-
dependence and a shift toward increased salience of
peer relationships. Together, this body of work em-
phasizes that adolescence may be a sensitive window
for heightened importance of the social environment,
including both positive effects of supportive caregiving

and more deleterious effects of social stressors such as
peer victimization.

While understanding developmental shifts in the role of
peers and family is crucial to clarifying the effects of
stress exposure during adolescence, individual variation
in neural function remains important to consider and
may moderate associations between stress exposure and
cognitive and emotional state. Indeed, individual
Current Opinion in Psychology 2022, 44:286–292
variation in ventral striatal and amygdalar activation
during anticipation of a social reward moderated the
effects of family conflict on psychopathology [63],
suggesting that individual neural sensitivity to social
context plays an important role in linking the effects of
social stressors with psychopathology. Sensitivity to
social context may also be a pathway through which
stressors experienced in adolescence impact processes

such as emotion regulation that have been closely tied to
psychopathology. For example, one recent study found
that for girls with heightened sensitivity to social
rejection, less effective recruitment of key neural re-
gions involved in emotion regulation was associated with
a history of more peer victimization [64]. These findings
support the formulation that individual differences in
susceptibility [65] may moderate the extent to which
social context influences emotion regulation and mental
health during adolescence.
Directions for future research in the study of
stress during adolescence
Despite remarkable advances in the science of adoles-
cent development and stress, there remain important
questions about the ways in which stress impacts

adolescent wellbeing. Research examining how specific
dimensions of stress exposure differentially impact
neurodevelopment and mental health may aid in eluci-
dating the range of outcomes following stress [13,66].
Frameworks identifying certain features of stress expo-
sure as particularly salient, such as threat and depriva-
tion [67] or unpredictability [68], have already proved
fruitful in understanding how the brain may be shaped
by distinct aspects of stress exposure. Leveraging such
theoretical advances in conjunction with examining
timing-specific effects [66,69,70] may yield a richer
understanding of associations between dimensions of

stress exposure in adolescence and the emergence
of psychopathology.

Further parsing associations between stress exposure,
neurobiological development, and psychosocial func-
tioning will require a clearer understanding of the timing
of sensitive periods throughout development. As sensitive
periods represent timeswhenneural regions or circuits are
tuning their function in an experience-expectant manner,
identifying the timing andduration of sensitiveperiods for
key neural circuits and functions is critical for advancing

knowledge of how to optimally prevent and treat stress-
related psychopathology [19,30,71,72]. Moreover, spe-
cific dimensions of stress may be particularly impactful
when experienced during specific stages of development
(e.g. during a sensitive period for a given circuit or region)
[66]. Thus, more thoroughly phenotyping how the envi-
ronment interacts with sensitive periods may further
elucidate the nature of heterogeneity in developmental
outcomes following stress.
www.sciencedirect.com
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In addition to theory-driven advances in how stress
exposure affects the adolescent brain, there have been
recent advances in approaches to modeling complex
change during developmental periods such as adoles-
cence. Analytical methods such as structural equation
modeling and generalized additive modeling may more
accurately capture complex region-specific nonlinear
neural maturational trajectories, as well as associations

with biological and environmental factors [28,49]. In
parallel, usage of unsupervised learning methods such
as similarity network fusion, latent profile analysis, and
sparse canonical correlation analysis may help to iden-
tify latent patterns that characterize subgroups of in-
dividuals [73,74] or multivariate links between
network connectivity and psychopathology [75,76].
Data-driven, circuit-based approaches that move
beyond region-of-interest investigations [77,78] will
lead to a more encompassing view of the complex ef-
fects of stress on neurodevelopment and have the

additional benefit of reducing bias in results [79].
Finally, the advent of large, multisite, open-source,
longitudinal studies such as the Adolescent Brain
Cognitive Development Study [80,81] will facilitate
the identification of robust, generalizable patterns of
neurodevelopment through adolescence. Such meth-
odological advancements allow a more precise mapping
of neurodevelopmental trajectories and parsing of co-
occurrences between brain, environmental exposures,
and psychopathology during adolescence.
Conclusions
Adolescence is a highly dynamic period characterized by
both vulnerability and opportunity. Here, we review
recent evidence that adolescence represents a sensitive
window during which maturational change in neuroen-
docrine systems, neurodevelopment, and social sensi-

tivity render youth uniquely attuned to stress and
support. Conceptualizing adolescence as a sensitive
window during which plasticity is increased across
multiple systems and metrics may aid in more clearly
unraveling links between environmental exposures,
neurodevelopment, and risk for psychopathology.
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